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Inviscid reacting flow near a stagnation point 

By RAUL CONTI AND MILTON VAN DYKE? 
Lockheed Palo Alto Research Laboratory, Palo Alto, California 

(Received 14 June 1968) 

A reacting flow free of molecular transport exhibits noteworthy behaviour in the 
neighbourhood of a blunt, symmetrical stagnation point. A local analytical 
study using the Lighthill-Freeman gas model reveals the basic structure of such 
a flow. Chemical activity is found to affect some, but not all, of the local charac- 
teristics of the flow. Unaffected are the pressure and velocity fields near the 
stagnation point, where the pressure varies quadratically and the velocity varies 
linearly as in an inert flow. In  addition, the stagnation point is found to be 
in chemical equilibrium for all non-zero reaction rates. On the other hand 
the density, temperature, and concentration fields are affected by the non- 
equilibrium reactions. The extent of this effect can be predicted on the basis of 
a reaction parameter that measures the rate of reaction in terms of the velocity 
gradient at the stagnation point. A rapidly reacting flow (with reaction para- 
meter greater than unity) approaches the stagnation point with vanishing 
gradients of density and temperature, whereas a slowly reacting flow approaches 
with infinite gradients. The flow field is represented mathematically by func- 
tions that are regular along the body but non-analytic in the normal direotion. 
Numerical computations support the validity of the local closed-form solution, 
and provide information on the local effects of the chemical history of the 
flow. 

1. Introduction 
One usually thinks of fluid flows as presenting a great variety of patterns, 

traced by streamlines that curve around bodies and coil in their wakes. However, 
under the eye of a sufficiently powerful glass most regions of most continuum 
flows dissolve into a uniform stream. Embedded in this local monotone there are, 
nevertheless, exceptional points that will not give up their identity under any 
magnification. Stagnation points, points of flow separation, and the eyes of 
vortices are some of these exceptional points that retain their character and thus 
allow for highly localized study, free of the intricacies of the global flow. This 
results in simple local solutions, often expressible in terms of elementary func- 
tions. Such a simple local solution is our aim in the present study of the symmetri- 
cal flow of an inviscid reacting gas in the neighbourhood of a blunt stagnation 
point. We shall retain the word inviscid to  denote a fluid that is free of the 

t Also, Department of Aeronautics and Astronautics, Stanford University, Stanford, 
California. 
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molecular transport processes giving rise to viscosity, diffusion, and heat 
conduct ion. 

The basic study of inviscid stagnating flow seems to have stopped with the now 
classical solution of potential theory, characterized by linear velocity com- 
ponents and quadratic pressure. To be sure, the literature contains a number of 
papers on stagnation-point boundary layers including the effects of molecular 
transport, radiation, and so on, but the indispensable companion-the inviscid 
external flow-has been generally neglected. A number of questions can be 
raised on this subject, among which a particularly relevant one concerns the 
combined effects of compressibility and finite reactions in the external flow, 
because compressible reacting flows are known to have a peculiar behaviour 
near the stagnation point. If the chemical reactions are fast compared with a 
characteristic flow time, the approach to stagnation appears to be smooth, but 
if the reactions are slow this is not the case. The slowly reacting fluid is delivered 
to the vicinity of the stagnation point in a state far removed from equilibrium, 
and then-as the flow speed vanishes-the chemical reactions eventually drive 
the flow towards equilibrium with drastic changes in the thermodynamic state 
of the gas. One is left wondering whether the fluid will ultimately reach equi- 
librium under any reaction rate, or even whether a flow that is zooming towards 
equilibrium will retain the basic dynamics of the classical potential flow. Such 
questions have not found a definite answer in the various numerical analyses now 
available, but seem rather to belong in the province of the closed-form local 
solution, upon which we embark. 

2. Local stagnation-point solution 
We consider either plane symmetric or axisymmetric flow of an inviscid 

chemically reacting gas impinging upon a smooth body, and seek an asymptotic 
description of the flow in the immediate vicinity of the stagnation point. 

The choice of co-ordinate system is crucial, and merits some discussion. In  
general, a local solution of an elliptic system of equations should be sought in 
polar co-ordinates. However, if the solution is analytic, it  can be found more 
easily as a multiple Taylor-series expansion in rectangular co-ordinates. The 
present analysis was actually carried out first in polar co-ordinates (Conti & 
Van Dyke 1966), which confirmed earlier evidence that a reacting flow is never 
analytic a t  stagnation. The solution is however semi-analytic, in the sense that 
it has a regular Taylor-series expansion in the direction tangent to the body, but 
is non-analytic in the normal direction. 

We therefore simplify the exposition by using rectangular co-ordinates, 
oriented as shown in the upper half of figure 1. Rectangular co-ordinates provide 
the substantial advantage that we must solve only algebraic rather than differ- 
ential equations. The price we pay for this simplification is that at  one stage we 
have to appeal to the analysis in polar co-ordinates (which the interested reader 
can reconstruct) for the result that a certain possible higher-order term is absent. 

Polar and rectangular co-ordinates share the defect that they carry the non- 
analyticiljy into the fluid instead of letting it be swept around the surface of the 
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body. In  higher approximations, this would lead to the compounding of spurious 
singularities. The remedy is to use co-ordinates that conform to the surface. Thus 
we would ultimately strain the polar co-ordinates to make 0 = 7~ describe the 
body, or replace the rectangular co-ordinates by ‘ boundary-layer ’ co-ordinates 
(figure 1)  with s measured along the surface and n normal to it. 

FIGURE 1. Alternative co-ordinate systems for local analysis. 

For a simple model of reacting gas we adopt Lighthill’s ideal dissociating gas 
(Lighthill 1957), with Freeman’s equation for the rate of reaction (Freeman 
1958). The governing conservation equations are 

mass : (xjpu), + (xjpv), = 0 ,  (1) 
x-momentum : uuz + vuy + p x / p  = 0,  ( l a )  
y-momentum: uvx + vvy +py/p = 0,  (1b)  
energy : h+Q(u2+v2) = h,, (14 
species: ua, + way = (a* - 417, (14 

where j = 0 for plane flow and j = 1 for axisymmetric flow. 
The velocity components u and v are as shown in figure 1 ; p ,  p, T and h stand 

for pressure, density, temperature and enthalpy, respectively, and a is the de- 
gree of dissociation (atom mass-fraction). The fictitious, local-equilibrium de- 
gree of dissociation a*@, 2‘) and the reaction time 7 are defined below. Under our 
present gas model the thermodynamic variables are further related by 

thermal state: p = R( 1 + a)pT, (1 e )  
caloric state: h = R[(4+a)T+fda] ,  ( I f  1 

a*2 P d  

1-a* p 
mass action: ~ - - - exp ( - f ,/T), 

P d  1 
rp2a*/( i - -a*)+i  reaction time: i- = ~ 

51 Fluid Mech. 35 
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Here R is the gas constant, p a  and 8, are the characteristic density and tempera- 
ture for the ideal dissociating gas and I' is Freeman's simplified reaction-rate 
constant. We have then nine equations for the nine dependent variables u, v, p ,  
p,  T, h, a, a*, and 7. It is convenient to reduce their number to eight by intro- 
ducing the stream function to satisfy the mass-conservation equation: 

where po is a reference density. 

then 
The local boundary conditions for a symmetrical body in symmetric flow are 

symmetry: 9 = 0 a t  x = 0, ( 3 4  

( 3 b )  
K 

tangency: @ = 0 at y = -- xz+ ..., 

where K is the initial curvature of the body (figure 1).  These conditions are homo- 
geneous and incomplete, so that as usual in local analysis of an elliptic system 
we are dealing with an eigenvalue problem. The solution will contain indetermin- 
ate constants that can be found only by fitting it asymptotically to a global 
solution, which in this case must be calculated numerically. 

2 

Leading terms 
We assume that the solution is analytic in the tangential co-ordinate x, and 
expand each dependent variable in even or odd powers according to its symmetry: 

(4) i P = PAY) + X2P2(Y) + . * - 7 

T = Tl(y) + x2T2(y) + . . . , 
with expansions similar to the last two for the symmetrical variables a, r ,  p ,  h, 
and a*. Substituting into the full equations (1) and equating like powers of x 
yields for the leading terms in each equation 
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- = - P ?  i r  ( +a1). 
71  P a  

The symmetry condition (3  a)  has been incorporated into the expansions, and the 
remaining tangency boundary condition (3 b)  gives 

$IP) = 0. (6) 

The density will have a finite value at  the stagnation point, which we hence- 
forth identify with the reference density po. Accordingly, we set 

PI(!!) = PO+O(Y") as Y+O, (7 a )  
where the exponent n of the secondary term will be found later. Another quantity 
whose proper functional form we need is the second-order coefficient for the 
pressure which, at the stagnation point, is related to the velocity gradient by 
p ,  = &po(au/8x)2. It is well known that the stagnation-point velocity gradient 
is finite for blunt bodies and we therefore expand as in (7a) ,  

P,(Y) = P2, + O(Y"). 

Then the x-momentum equation (5a )  gives, with a relative error of O(y"), 

In  view of the tangency condition (6), the solution is 

= Ay+O(yl+"), A2 = -2(1 +j)2-. p20 
Po 

Then the y-momentum and energy equations (5  b) and (5 c )  give 

p1= Po-+3PoA2y2+O(y2+"), 
h, = ho-&42y2+O(y2+"), 

where subscript zero denotes a stagnation-point value. 
To complete the first cycle of solution giving leading terms in the thermo- 

dynamic and dynamic variables, we expand all thermodynamic variables as in 
(7a )  and substitute into the last five equations of (5) ,  which, with an obvious 
extension of notation, yields for the leading terms 

61-3 
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The system (9) is indeterminate, 'with the equations outnumbered by two un- 
knowns, pzo  and a thermodynamic variable, say po. These quantities cannot 
be obtained elsewhere within a purely local solution, and recourse must be had 
to a global solution that includes details of the distant flow and the intervening 
chemistry. However, if we anticipate that the present solution is valid in some 
neighbourhood of the stagnation point, equations (9) do answer some of our 
original questions. Equations (9a )  and (9b) show that sufficiently close to the 
stagnation point the basic dynamics of the classical potential flow is still valid, 
since the linear velocity and quadratic pressure are not distorted by the chemical 
reactions. Equation (9d) shows that for other than identically frozen flow 
( T ~  = co) the fictitious-equilibrium and actual degree of dissociation are equal at  
the stagnation point, and, since the former obeys the law of mass action (gg), 
so does the latter. Thus the stagnation point is established to be in chemical 
equilibrium for any finite reaction rate. We observe in passing that for a sharp- 
nosed body with a fractional-power velocity, so that ~l = Byn with 0 < n < 1,  
(7 b) should be replaced by p z  = pZlyn-l  + .. . and (5d )  would yield 

(a t  -a0)/r0B = const. 

instead of (9d). It follows that in this case the stagnation point is out of equi- 
librium by an amount dependent upon the flow and chemical kinetics. 

Secondary terms for the thermodynamic variables 
Next we seek secondary terms for the thermodynamic variables by assuming, 
subject to modification in special cases, the expansions 

PI  =Po(1+CpYy"+...), 
a1 = ao( 1 + Cayn + . . .), 
a:: = ao(l+C:yn+ ...), 
TI= To(l+CTyn+ ...), 
71 = 70(1+C,yn+ ...). 

Again substituting into equations (5) yields, for the secondary terms 

which make a determinate linear system for C,, C:, C,, and CT. The relaxation- 
time coefficient is given as a function of these by 
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For n = 2 the system ( 1  1) is non-homogeneous and yields a definite solution. 
For n $: 2 it admits a non-trivial eigensolution if its determinant vanishes, which 
fixes n at the value 

We must include both possibilities, and thus the expansions (10) become 

Here 

I - PCyK Po i - PCyK 

+... i 4-1-01, 

TI - =  1 +  
TO 

I 

and C is an unknown constant multiplying the eigensolution. These results are 
to be understood in the sense that the secondary term is the one in y2 if K > 2, 
but the one in yK if K < 2. The other term is the tertiary one in the ranges 
2 < K < 3 and 1 < K < 2, respectively, but of some higher order otherwise, 
because the next cycle will add terms in y3 and yl+=. 

In  equations (14) we see that the reaction parameter K ,  proportional to the 
ratio of flow time (1/A) to chemical relaxation time ( T ~ ) ,  plays a dominant role in 
the local behaviour of the flow. It ranges from zero (frozen flow) to infinity 
(equilibrium flow) and allows for a clear-cut division of the flow into two regimes: 
the regime of fast reactions (1 < K < co) where density, temperature and de- 
gree of dissociation approach their final stagnation values with vanishing deriva- 
tives (proportional to yK-l), and the regime of slow reactions (0 < K < 1) where 
the same variables approach stagnation with derivatives tending to infinity. The 
dividing case K = 1 represents that special flow where the rate of reaction and 
the rate of approach are in precise balance to give a finite derivative at  the stag- 
nation point. The situation is sketched for the density in figure 2. 
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We noted that the pressure and enthalpy (9) retain the basic quadratic vari- 
ation of the incompressible flow. This feature seems firmly rooted in the be- 
haviour of the flow. It is unaffected by the chemical reactions, and it ordinarily 
impresses quadratic terms upon the higher-order expansions for density, 
temperature, and so on. However, it gives rise to a special situation when K = 2, 

- ‘ 0  
Y 

FIGURE 2.  Local behaviour of the density near the stagnation point. 

since then the pressure-induced quadratic terms combine with their reaction- 
induced counterparts. The situation bears further attention. 

ConJluence of modes at K = 2 
The upper term in each of the equations (14) becomes infinite at  K = 2; but, 
because singular behaviour is physically impossible, that divergence must be 
cancelled by a corresponding singularity in the unknown constant C that multi- 
plies the lower term. Hence the preceding results are indeterminate at K = 2. 
However, we can extract determinate results from them by a simple limiting 
process, and logarithmic terms emerge. Setting K = 2 + F  in the expression (14) 
for a,/a,, for example, and using XE = 1 + slogx+ O(e2), gives 

a1 H 
- “0 = 1+yy2+Cy2(1 +€logy+ ...). 

We can avoid divergence as F -+ 0 by redefining the unknown constant as 

Then letting F -+ 0 yields 
C = D-HIE. 

(16) __ = 1-Hy210gy+Dy2+ ... ( K  = a) ,  
@-0 

with corresponding expressions for the other quantities in (14). This shows that 
terms in y210g y would have had to be inserted into the assumed expansions 
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(10) in the case K = 2 .  This completes the first half of the second cycle, that is, 
finding the secondary terms for the thermodynamic variables (and tertiary ones 
in the range 1 < K < 3, including K = 2 if we count y210g y and y2 separately). 

Xecondary terms for the dynamic variables when K c 1 
To find secondary terms for the dynamic variables p ,  and we set 

1 p ,  = po - +A2p0y2(1 + c, yn + . ..), 
= Ay( l+Cpyn+ ...). 

Terms with n = 1, which are proportional to the nose curvature K ,  are introduced 
into even incompressible frozen or equilibrium flow by the next term in p 2 ,  
corresponding to n = 1 in (7b). However, for K < 1 these will be preceded, 
through coupling with the expressions just calculated, by terms with n = K ;  
and we concentrate on this range of slow reactions. 

We substitute the expansions (17) into the x- and y-momentum equations 
(5a ,  5b ) ,  together with pl/po from (14). It is at this stage that the present analysis 
in rectangular co-ordinates yields to the natural superiority of polar co-ordinates. 
The function p2(y) in (4) might contain a term in yg, which would enter here. 
Apparently tha t  term cannot be evaluated within the framework of the present 
analysis. However, carrying out the solution in polar co-ordinates shows that no 
such term exists. We choose simply to quote this result without presenting the 
more complicated analysis in polar co-ordinates. The final results of the substi- 
tutions, added to the primary terms already calculated, give for the dynamic 

2K[4+j+ (1 -j) K - (1 +j)K2] 
" = '+ (1 + K )  (2 + K )  [ 2  - (1 +j)K]  PCy"+ ...). (19) 

Although we have concentrated on the range K < 1, it is worth while to explain 
the apparent divergence of these results at K = 1 in axisymmetric flow and at  
K = 2 in plane flow. The basis of our entire analysis is the eigensolution = A y ,  
which may be regarded as describing the irrotational flow of an incompressible 
inert gas normal to a flat wall. For axisymmetric motion, the second such term 
is an unknown multiple of y2 (which describes a rotational incompressible flow 
against a wall). Just as in obtaining (16), we can avoid divergence by redefining 
the unknown constant multiplying that second eigensolution. This shows that 
for K = 1 we must add terms in y210gy to the assumed expansions (17). For 
plane motion, on the other hand, the second eigensolution is an unknown 
multiple of y3; so that divergence at  K = 2 is avoided by adding terms in y3 log y 
to (17). 

Critique of a related local solution 
Stulov & Turchak (1966, p. 3) have obtained a local solution similar to the present 
one as part of their analysis of the flow field about a sphere. They deal with 
vibrational non-equilibrium rather than molecular dissociation, but nevertheless 
some of the basic features of both solutions coincide. In  particular, the distinctive 
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fractional-power behaviour of slowly reacting flows is the same. They arrive at  a 
species-conservation equation (3.2) of the same form as the present ( 5 4 ,  but at  
that point proceed to associate the process with a simple relaxation one (of 
constant relaxation time and forcing function, as evidenced in their solution 
(3.3)), when in fact the forcing function is coupled tothe flow itself. This unneces- 
sarily weakens their argument for equilibrium at the stagnation point, which is a 
foregone conclusion for a simple relaxation process but not necessarily so for a 
more general situation. More seriously, in taking that step they suppress the 
quadratic terms imposed on the forcing function by the pressure and enthalpy, 
and so miss the upper alternative on the right-hand side of our equations (14). As 
a consequence, in near-equilibrium flows their temperature and density approach 
the stagnation value with ever-increasing powers of the distance, when in fact the 
variation can be no more than quadratic. 

3. Asymptotic fit to numerical solutions 
So far we have pursued the local stagnation-point solution on the grounds of 

self-consistency. It was clear from the outset that the solution has an eigenvalue 
character, and so its relevance in any particular case must be found in the con- 
text of a larger description of the flow. Specifically, the fist-order local solution 
depends on the global flow for the values of three constants: A ,  C and, say, p,. 
The thermodynamic state at  the stagnation point is unknown to the local solu- 
tion, but, since we have established that it is an equilibrium state, knowledge of 
the total enthalpy of the flow reduces the unknown to a single thermodynamic 
variable, such as p,. Our next step will be a numerical analysis of the flow field, 
searching the stagnation neighbourhood for the behaviour predicted by the local 
solution. 

For convenience, we follow the numerical formulation of Conti (1966) for 
flow behind a circular-section shock wave of radius R,. In present terms, the flow 
along the stagnation streamline is computed by integrating equations ( 5 ) ,  with 
initial conditions given by the Rankine-Hugoniot (frozen) shock relations, and 

1 1 1 dPl p 2 =  -~ PI+-- -~ 
2 y + R ,  dy * 

the assumption that 

(Y + Rb) 
Here R, is the distance between the centre of curvature of the shock wave and the 
stagnation point, and the form of p 2  is obtained from Conti (1966) through a 
transformation into the present co-ordinate system. It suffices us to not,ice that 
this equation gives p2,  = -p , /Ri ,  which bears on the constant A in the local 
solution (9 a) .  

Equation (20) closes the system ( 5 ) ,  which can be rewritten as a sixth-order 
non-linear system of ordinary differential equations. Our local solution represents 
a node in the multi-dimensional phase space of that system. Thisisbest illustrated 
by defining the new variable w = a: - a,, which vanishes at  the stagnation point 
since there the flow is in equilibrium. Then the local solution gives 

1 
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wl/K+ ..., A 
$1 = [a,C(&- 1)]1’X 

with corresponding values for the other variables. The situation is outlined in 
figure 3. 

K > 2  

t 
Po-P1 

FIGURE 3. Nodal character of solutions near the stagnation point. 

One can foresee that those solutions approaching the origin will be drawn to i t  
by the stable singularity, and this proves indeed to be the case in the numericaJ 
examples. Calculations carried out with either or w as independent variables 
always lead the computing machine to the point +l = w = 0. A family of solutions 
is generated by assigning particular values to the rate constant I?, and each 
member of the family proves to approach the stagnation point with fixed values 
of A and C ,  and reach a corresponding final state determined by p,. As an exampl e 
of these numerical computations, figure 4 shows the degree of dissociation alon,g 
the stagnation streamline for axisymmetric flow, and table 1 gives accurate 
values of A ,  C and the thermodynamic state at  the stagnation point for a range 
of values of the reaction parameter K. Flows with planar symmetry behave iin 
essentially the same way as axisymmetric flows, and the case of plane flow wit’h 
K = 1 is included in the table for illustration. The pursuit of numerical so1ution.s 
in the immediate vicinity of the stagnation point demands a high computationaJ 
accuracy, especially at small values of the reaction parameter. 

The final state of the stagnant gas varies monotonically with I? over only a 
small range, as shown in table 1. This lack of sensitivity to the rate of reactioin 
results, in turn, in a predictable behaviour of the reaction parameter, which i 8 
almost proportional to the rate constant r. Within its limited range, the degree 
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of dissociation increases as the reaction becomes slower. This is in accordance 
with the results of Vinokm (1969), who has made a detailed theoretical study of 
the state of the gas at  the stagnation point. Following his work we interpret the 
frozen limit as that equilibrium state reached by constant-pressure relaxation 
from the conditions at the stagnation point in frozen flow, as shown in table 1. 

We gain a quantitative idea of how the numerical solutions fall into the form 
prescribed by the local solution near the body by following the asymptotic be- 
haviour of certain variables. Thus, the quantity d$Jdy should, according to 

FIGURE 4. Degree of dissociation on the stagnation streamline between the shock wave 
(abscissa = 1.0) and the body. The flow is axisymmprtric, with the parameters of table 1. 

the local solution, approach the constant value A at the stagnation point. 
Similarly, the quantity (doll/ dy)/(olo KyK-l) shouldapproach the constant value C. 
It is advantageous to conduct this search in terms of the departure from equi- 
librium (0) rather than the distance to the stagnation point, since then the results 
are insensitive to the rate of reaction. A typical example is shown in table 2. The 
clearly asymptotic character of the solution shown there indicates that the local 
closed-form solution is indeed supported by the numerical examples. The range 
of validity of the local solution in terms of distance upstream of the stagnation 
point is very sensitive to the rate of reaction. Thus for K x 0-5 the local solution 
incurs an error in a of 1 yo in the fist tenth of the shock layer, and a decrease of 
K by a factor of ten decreases the distance by a factor of lo8. 
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4. Concluding remarks 
The local solution developed in $2, and supported by numerical analysis in 

9 3, indicates that the situation in some neighbourhood of a blunt symmetrical 
stagnation point, to be described in increasing orders of distance from that point, 
is as follows. 

The mathematical structure of the flow is cast by two forces, the quadratic 
pressure-traceable back to the perfect potential flow-that excites sympathetic 
integer-power terms in the thermodynamic variables, and the chemical reactions, 
which introduce fractional-power terms in the axial direction alone. This results 
in a semi-analytic description of the flow, which is regular along the body but 
non-analytic in the normal direction. 

5 x 10-1 
1 x 10-1 
1 x 10-2 

1 x 10-1 

1 x 10-6 

1 x 10-8 

1 x 10-3 

1 x 10-5 

1 x 10-7 

1 x 10-9 

10.3 
10.5 
10.68 
10.698 
10.7003 
10.70053 
10.700546 
10.7005482 
10.70054844 
10.700548460 

- 0.1 
- 0-04 
- 0.035 
- 0.0346 
- 0.03460 
- 0.034602 
- 0.0346018 
- 0.03460177 
- 0.034601772 
- 0.0346017722 

TABLE 2. Asymptotic character of the numerical solution for K = 0.04893 near t,he 
stagnation point. All variables are normalized as in table 1. 

The stagnation point is found to be in chemical equilibrium for any reaction 
rate other than zero. This equilibrium state will depend on the chemical history 
of the stagnating flow, and is therefore out of the province of the local solution. 
Numerical analysis confirms the independent finding that the stagnation states 
cluster about the infinite-rate (equilibrium flow) state, which is well removed 
from the zero-rate (frozen flow) state. 

To predict the behaviour of the stagnating flow one needs to  know the reaction 
parameter ( K ) ,  whose precise value can be found only a posteriori. However, for 
the Lighthill-Freeman gas model the reaction parameter is not very sensitive to 
the chemical history of the flow, because neither is the final state of the gas upon 
which it depends. 

One finds that, confronted with the new situation of non-equilibrium chemical 
reactions, the stagnating inviscid flow responds by retaining equilibrium at the 
body, and allowing for drastic departures from it in the normal, but not in the 
tangential direction. This in turn presents boundary-layer theory with a similar 
challenge, since it must conform to this external flow but it was not originally 
devised to  accommodate that type of irregularity. 
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